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Two Discussion Points in terms of Educational Aspect

[1] Conductivity of Polymer-conductive (semi-conductive) fillers increases 

with elevating temperature up to glass temperature. This is attributed to an 

increase in electron tunneling.  This analysis has been pursued by very 

simplified equation proposed by Scheng. However, the distance between 

conductive fillers is picometre size indicating out of framework of polymer 

science. On the other hand, the distance calculated by the original equation is 

reasonable nano scale. However, his original equation is very difficult  and 

this talk shall make a commentary on the concept of the equation. Before the 

commentary, the history of electron tunneling, the history of electron 

tunneling mainly evaluated at absolute temperature in terms of simple 

quantum mechanics. 



[2] The tunneling current is direct current (DC).  This value 

can not be related to the morphology of the system, since the 

resistivity of the system was reflected by three: 

1) the interference resistance between electrode and composite, 

2) resistance of the grain boundary region between filler and 

polymer 3) filler resistance. 

To classify them, curve fittings between experimental complex 

impedance and that calculated by three-unit model and three 

kinds of resistivity was determined at frequency = 0 (DC 

component) and the distance between adjacent fillers was 

determined.



The method and system for 

detecting leakage in electronic 

device are important, because 

of recent miniaturization of 

semiconductor device.

The leakage current generates 

through thinned insulator 

film by tunneling electrons

associated quantum mechanics.

Surfaces of Cu wire are coated by very thin oxide film with 

insulation property. Even so, the connected Cu wire pass 

through current smoothly. 

Current mechanisms of polymer-filler systems have been 

discussed by SEM simply in terms of the observation of 

continuous filler ensuring electric channels. The surface of Cu 

wires are coated by oxide film with insulation property. Even so, 

current pass through the connected Cu wire smoothly. 



The positive temperature coefficient (PTC) effect by 

polymer-conductive (semi-conductive) composite have been 

applied to floor heating and electro-thermal wear materials.

The electron tunneling mechanism is discussed in relation to 

the morphology of the system by complex impedance. 
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PTC effect by thermal expansion

of polyethylene (PE) matrix

The decrease of resistivity  is

due to the thermal expansion

of PE matrix higher than 0oC .

Tunneling effect by

very few thermal

expansion of PE

Matrix lower than

0oC.

The electron tunneling

number increase with

elevating temperature.

Figure. Temperature dependence of resistivity for  PE/carbon black (CB),

PE/carbon fiber (CF) and PE/carbon nanotube (CNT)

To avoid PTC effect, polyimide (PI) is used as matrix to deduce an increase 

in electron tunneling  with elevating temperature, since PI is very few 

thermal expansion at temperature up to 160oC.

J. Polymer Sci. Part B

47(13) 1253-1266 (2009)



The lectures about detailed electron tunneling for graduate and undergraduate 

students studying polymer science are not in detail and the teaching staffs are 

not very knowledgeable about the electron tunneling.

This talk is focused on easy-to-understand explanation of electron tunneling.

Current vs. voltage and

conductivity vs. voltage for PI/VGCF 

composites with two VGCF contents,

3.11 and 6.26 vol%.

Experiments : Color open circles

Theoretical   :  Curves



Focus on the present talk
VGCF (vapor-grown carbon fiber)  : Rigid semi-conductive filler

PI : rigid amorphous polymer with a very low thermal expansion

Very low thermal expansion is important to verify that an increase in 

conductivity with increasing temperature is attributed to active electron 

transfer between adjacent VGCF surfaces (tunneling current) , since the gap 

distance (D) between adjacent VGCFs may be postulated to be constant and 

independent of external heating temperature.                                                                               

Interfacial  effect
1) Between Adjacent VGCFs

2) Between Bulk sample and

Electronode

Tunneling Effect

Between Graphite structure



The present section deals with SchrÖdinger’s wave function in

a way concerning basic knowledge of physics at the high school level.

Generally, wave function is represented as a trigonometric function. 

Traveling wave to right with velocity u moves ut in the x direction 

(one dimensional case) after time t as shown in the lower Fig.

Travelling wave 
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The above Eq. can be applied to de Broglie wave representation as a wave 

but it is independent of wave-particle duality.

To combine the relationship between particle and wave properties, 

the following replacement must be emphasized:
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Given the difficulties already noted, the instructor needs to emphasize that 

SchrÖdinger’s wave function is an equation formulated only by replacement 

of E = hν, k = 1/λ= p/h (λ= h/mv= h/p) - as discussed before.  To pursue 

this approach, we now consider an example for kinetic energy: 
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The left side of the above Eq. is given as a function of x, while the right side as a 

function of t. Hence the value of the above Eq. must be constant and can be 

represented by                     ; 

Here E is a arbitrary constant at present but will be shown to stand for the total 

energy later. The left and right sides may be represented by 
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Eq. (1) relating to the position (x) has been known as SchrÖdinger’s wave function. 

The instructor has to emphasize that de Broglie wave is a travelling wave; since the 

electron is locked in a very small volume like that of an atom, the corresponding 

de Broglie wave can be treated as a standing wave whose amplitude depends on 

a function of position. The significance of this approach shall be described later.



Let’s consider the system that an electron with V = 0 is confined in the cliff 

valley of potential (         ) as shown in Fig. (a). For very simple analysis, 

the electron cannot exist at x < 0 and x > a, because of            and           .

On the other hand, V = 0 is satisfied 

at 0 < x < a and SchrÖdinger’s 

wave function becomes as follows:
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The result is shown in Fig. (b).

(a)

(b)



As shown in Fig. (c), however, the thicknessδof the cliff valley with 

finite height VL is very thin, the electron can pass through the potential barrier 

(the cliff valley). The phenomenon is termed as tunnel effect and the possibility 

of the electron tunneling is proportional to 
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The possibility is surely related to tunnel current but the actual equation 

representing tunnel current density must be derived by much complicated 

process using WKB approximation.The above possibility can be constructed 

when the potential barrieris flat independent of δ. 

(c)

T=0o

:F

:F Fermi-Dirac  energy

The energy level of 

tunneling electrons

is lower than Fermi-

Dirac energy.

T=0o

WKB approximation



The above possibility can be constructed when the potential barrier is flat. 

The well-known tunnel current is derived for the arbitrary shape V(x).

In this case, the permeability coefficient D(Ex) in the x direction calculated 

by WKB approximation is given by
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The density J of electron current is given by

Fermi-Dirac distribution function f(E)
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Classical representation for tunneling current by Simmons

A very insulating and very thin film is set between two electrodes, current 

can flow by means of tunneling effect. Many papers have been reported. 

This paper introduced the tunneling current reported by Simmons. 

The diagram is similar to Simmons.  [Simmons, J. Appl. Phys. 34, 1793, (1963)]

s1, s2 : limits of barrier

Fermi level

Δs = s1 – s2

η: Fermi level
Ψ： work function of metal

electrode

Δs is different from the 

thicknessof the insulator film.

Ex is the energy component of the incident electron in the x direction.



The net flow of electrons N (= N1 – N 2) through the barrier is
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Accordingly, tunnel current density J is written by using charge electron e.
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The above Eq. is the general equation to represent tunnel current density.

Let’s consider current-voltage relationship.  To pursue the analysis, 

the potential barrier height V(x) is represented as  . Thus
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The net flow of electrons N (= N1 – N 2) through the barrier is
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Accordingly, tunnel current density J is written by using charge electron e.
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[Simmons, J. Appl. Phys. 34, 1793, (1963)]

Illustration showing current flow

between the electrodes.

Electrode 1 Electrode 2



Following complicated mathematical treatment by Simmons, 

the general equation can be described as follows:

Here we shall refer to Fermi-Dirac distribution function f(E) briefly. 

Fermi-Dirac distribution function is given by 
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where is chemical potential and becomes EF at absolute temperature 

T = 0oK (To). In terms of physical meaning of f(E),  f(E) at T = 0oK is

in the range between 0 ~ 1 and is classified into three cases.
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Considering characteristics of Fermi-Dirac 

function at T = 0oK,    is given by 
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Following complicated mathematical treatment by Simmons, 

the general equation can be described as follows:
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The above Eq. is the general formula representing density of tunnel current 

and  the parameters in Eq. are classified by the strength of electric field.



For low-voltage range

d = do , do is the thin film thickness.
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Exercise
Let’s consider the numerical calculation in low-voltage range. To pursue it, 

the area of insulation film is defined as S and tunneling current and resistance 

are defined as I and R. Because of  and , RS becomes
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e(electron charge) = 1.602 x 10-19(C),

m = 9.109 x 10-31 (kg), 

h = 6.626 x 10-4 (J・s)  

Assuming Å and

for exercise of the numerical 

calculation. RS becomes 

8.917 .  The relationship 

between barrier width (do) and 

barrier height (    ) is shown 

below.
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Let’s consider that the dimension of the lower Eq. is current  density.
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Thermal fluctuation-induced tunneling effect

The well-known theory described already is attributed to that the 

tunneling of electrons is independent of temperature.

As shown already, however, the conductivity of polymer-filler is sensitive to 

the measured temperature. To solve this problem, one approach was proposed 

by Sheng in terms of fluctuation-induced tunneling condition. 

To do so, Sheng was adopted the average square of thermal fluctuation 

voltage across the tunnel junction  

based on the assumption 

shown in Fig., in which C denoting 

only a small part of the total 

capacitance Co between the two 

large conducting segments is 

given as  and R/2 denotes the 

resistance connecting the 

junction capacitor to the rest 

of the conducting segments.

Schematic tunneling junction is depicted

P. Sheng, Phys. Rew B21, 2180 (1980) as a parallel plate capacitor.
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When C<<Co,
2

TV is given by
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Since the equipartition theory is a direct consequence of the Boltzmann 

distribution, the above equation suggests that the probability of fluctuations 

is proportional to                       , associated with the energy needed to move 

the system away from equilibrium. For the general case of a capacitor with 

an externally applied potential VA, a deviation of          away from VA requires
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where the first two terms represent the change in the electrostatic energy of 

the capacitor and the last term gives the work done by the external potential. 

The net result of                           means that the normalized function of 

fluctuation probability for                      is given by
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Following Sheng, the applied field is introduced in addition to  and 

the two total fields must be considered. At any given value of       ,
A T

AT  

When               and the equal possibility of the occurrence, the net tunneling current 

along the direction of the applied field is given by

T

in the same direction 

AT   in the opposite direction

AT  
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The fluctuation-induced tunneling conductivity      of the junction is then 

obtained by thermal averaging as follows:
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Through very complicated mathematical treatment, the current density 

can be obtained as follows:
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Based on the concept by Simmons, the accurate potential barrier 

function is expressed by Sheng as follows:
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where u = x/d is the reduced spatial 

variation and x is the distance from 

the left surface of the junction. Uo

is height of the rectangular potential 

barrier in the absence of image-force 

correction and
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is the dimensionless parameter governing the amount of image-force 

correction and the barrier shape, in which e is the electric charge and K is the 

dielectric constant of the insulating barrier. The potential representing as Eq. 

defined to be zero corresponds to Fermi level of the conducting region. 

The u* value providing the maximum of Eq. (1) is defined by 

. At Um = 0, .  

A new dimensionless parameter is defined as .
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As pointed by Sheng, the calculation of the junction conductivity  must 

involve thermal averaging  as expressed already.  (Important) )(
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where

is treated as a constant.o

Furthermore, Sheng proposed a simple equation which has been 

adopted in a number of papers. A parabolic potential barrier is 

defined as follows:
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As the summation of the two factors 

shown as a dashed line takes a 

maximum at , the first 

integrated values in Eq. also takes a 

maximum.  The numerical calculation 

indicated that the first term is much larger than the second term.

* T

* T



To pursue simple analysis, Sheng proposed the parabolic potential barrier

Up in stead of the above Eq . 
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The popular equation  to evaluate temperature dependence

of  polymer-filler composites by tunneling current。
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Current vs. voltage by DC measurement

3.11 vol%

D (d) = 1.20 nm

6.28 vol%

D (d) = 1.00 nm

D or d

A : area

With increasing

1) vol% content

2) Temperature

3) Voltage 

exponentialexponential (d)
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D (d) = 1.200 nm      3.11 vol%

D (d) = 1.000 nm      6.28 vol%

D (d) = 0.000502nm      3.11 vol%

D (d) = 0.000329 nm     6.28 vol%

Out of the common sense of

polymer science. 

PE is heat resistant polymer and the thermal expansion of bulk is almost zero.

Then, the distance between adjacent VGCFs is constant independent of 

temperature. The increase in conductivity (current) with temperature is due 

to an increase in surface area (A) over which most of tunneling effect occurs.

Not good



How to evaluate electron tunneling in relation to sample morphology?

1) the interference resistance 

between electrode and composite, 

2) resistance of the grain boundary region 

between filler and polymer 

3) filler resistance.

To classify them, the curve fittings 

between experimental complex 

impedance and that calculated by 

three-unit model and three kinds 

of resistivity was determined 

at frequency = 0 (DC component) 

and the distance between adjacent 

fillers was determined.
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The corresponding parameters from the simulating results 

for the composite with 6.28 vol% VGCF

T (oC) 25 40 80 120 160

R1 (Ω) 30 30 30 30 30

C1 (F×10-3) 89.5 89.9 90.0 95.0 100

R2 (Ω×104) 1.62 1.55 1.42 1.36 0.94

C2 (pF) 783 800 793 890 920

α 0893 0.888 0.883 0.874 0.865

R3 (Ω) 310 308 306 304 300

C2 (pF×104) 3.40 3.51 3.80 4.08 4.18

β 0.6548 0.6500 0.6248 0.6304 0.6504
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κDC, corresponding to the DC component (frequency   0 Hz) of 

AC conductivity, is represented as εo/{Co(R1 + R2)} for the 3.11 vol % 

VGCF content andεo/{Co(R1 + R2 + R3)} for the 6.28 vol % VGCF content.

R2 >> R1 two units

R2 >> R1, R3 three units

κDC, listed in previous Table are hardly affected by the first and third units

and are governed by the second unit associated with a contact region between 

adjacent VGCFs.  Furthermore, the value of κDC increases with increasing 

temperature.

The D and A values evaluated by AC current are equal to those by DC 

current. The D values depend on the VGCF content but are independent of 

temperature. The increase in κDC is in connection with the value of A 

associated with electron transfer area.

Furthermore, the values are independent of the electric field direction.

3.11 vol%      D = 1.20 nm

6.28 vol%      D = 1.00 nm

A : area    With increasing   

1) vol% content,  

2) Temperature  

3) Voltage
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Temperature dependence of parameters 

D, A and at 0.1 and 0.5V calculated by using         .

T (oC)
D (nm) A (nm2) D (nm) A (nm2)

0.1V 0.1V 0.1V 0.5V 0.5V 0.5V

3.11 vol%

25 0.02200 1.20 1.621 0.02216 1.20 1.740

40 0.02200 1.20 1.701 0.02216 1.20 1.752

80 0.02200 1.20 1.931 0.02216 1.20 1.912

120

160

0.02200

0.02200

1.20

1.20

1.941

1.977

0.02216

0.02216

1.20

1.20

2.000

2.135

T (oC)
D (nm) A (nm2) D (nm) A (nm2)

0.1V 0.1V 0.1V 0.5V 0.5V 0.5V

6.28 vol%

25 0.02468 1.00 2.010 0.02515 1.00 2.360

40 0.02489 1.00 2.330 0.02531 1.00 2.510

80 0.02498 1.00 2.430 0.02546 1.00 2.780

120

160

0.02501

0.02598

1.00

1.00

2.500

2.750

0.02568

0.02582

1.00

1.00

2.860

2.980



Most of natural science students have learned “Materials Science” 

as one of their undergraduate course subjects. Certainly, they have 

acquired knowledge about physical and chemical properties of 

materials and have been learned the concept of Schrödinger equation 

in their courses concerning the probability density of electrons in 

a hydrogen-like atom and the eigenvalue of energy. However, most 

of the polymer scientists who have majored polymer physics in their 

graduate course show little interest for Schrödinger equation to 

investigate electric properties of conductive polymers and conductive 

filler-polymer composites. The analyses of polymer scientists have 

been carried out qualitatively by using the simplified final equations 

proposed by solid physicists and electrical engineers. They have 

analyzed their results based on the conductivity of the filler-polymer 

composites by using the theoretical tunneling analyses established 

for conductive (or semi-conductive)–insulator–conductive 

(or semi-conductive) system.  

The present talk introduced slight detailed treatments about electric and 

dielectric properties for filler-polymer composites in terms of elementary 

quantum mechanics. 




